What is Cannabis?

What is Cannabis?

Cannabis (/ˈkænəbɪs/) is commonly known as marijuana or hemp (see Alternative names for Cannabis) and has two known strains: Cannabis sativa and Cannabis indica, both of which produce chemicals to deter herbivory. The chemical composition includes specialized terpenes and cannabinoids, mainly tetrahydrocannabinol (THC), and cannabidiol (CBD). These substances play a role in defending the plant from pathogens including insects, fungi, viruses and bacteria.[1] [2]THC and CBD are stored mostly in the trichomes of the plant,[3] and can cause psychological and physical impairment in the user, via the endocannabinoid system and unique receptors.[4][5] THC increases dopamine levels in the brain, which attributes to the euphoric and relaxed feelings cannabis provides. As THC is a secondary metabolite, it poses no known effects towards plant development, growth, and reproduction. However, some studies show secondary metabolites such as cannabinoids, flavonoids, and terpenes are used as defense mechanisms against biotic and abiotic environmental stressors.[6][7][8]

Cannabinoids

Cannabis

The production of the cannabinoids THC and CBD are a result of a series of chemical reactions, and are just two types of over a hundred that are known.[9][10] Inside the transcriptomes of glandular trichomes in the cannabis plant, the pathway for cannabinoid production takes place.[9] Beginning with the formation of 3,5,7-trioxododecaneoyl-COA by the condensation reaction between hexanoyl-CoA and malonyl-CoA, catalyzed by type III polyketide synthase (PKS), the product is then used to form olivetolic acid. After the geranylation of olivetolic acid, cannabigerolic acid (CBGA) or cannabigerivarinic acid (CBGVA) is formed.[11] The decarboxylation of these acids yield what we recognize as THC and CBD.[12]

Terpenes

Terpenes are a key component in chemotaxonomical classification of cannabis strains as terpene composition is a phenotypic trait. Majority of terpenes found in cannabis are hydrocarbons, which are a direct product of terpene synthase (TPS) enzymes.[13] The molecular make up of terpenes in a cannabis plant involves the linking and elongation of chains in hydrocarbons and isoprene units, formed by isopentenyl pyrophosphate and dimethylallyl pyrophosphate.[14][15] Terpenoids are basically terpenes with the addition of oxygen, among other structural additions.[15][16] There are numerous types of unique functional terpenes in green plants and are formed via many differing pathways; methylerythritol phosphate (MEP), cytosolic mevalonate (MEV), or deoxyxylulose phosphate pathway (DOXP) to name a few. In addition, mevalonic acid's (MVA) involvement in biosynthesis of complex terpenoids, such as steroids, was demonstrated in 1983.[14] Once produced, specifically within the disk cells, terpenes are stored within the trichomes of the plant. There are several types of terpenes in cannabis composed of varying numberss of isoprene units.[16] They contribute to the signature aroma and insecticidal properties via their emission as volatile organic compounds.[10][15] Different cannabis strains synthesize different terpenes through their biochemical pathways, and diversity of the terpenes is dependent upon the diversity of the TPS enzymes present in the cannabis plant's TPS gene pool. Though, causes of variations in the TPS enzymes are still unknown.

Monoterpenes myrcene and sesquiterpenes β-caryophyllene (binds to the human CB2 cannabinoids receptor) and α-humulene are the most common terpene compounds, and are present in most varieties of cannabis strains. The lack of exact standards makes it sometimes difficult for scientists to classify new terpenes. Terpene profiles are subject to change under different environmental conditions, which may lead to variation in TPS gene expression, ultimately leading to a variation in the synthesized terpenes.[13] Terpenes have unique, distinct aromas, which is why each strain smells different. Cannabis plants, like many others, biochemically synthesize terpenes with intense aromas as a method of chemical defense in attempts to repel predators, and invite pollinators. Because terpenes and terpenoids are biologically active molecules, it is possible variations in terpenes may elicit different biological and psychoactive responses in humans. This is why people claim to have different psychological effects to different strains.

Alternative names for Cannabis

Cannabis has many different names, including more than 1,200 slang terms, and more than 2,300 names for individual strains.[17] Additionally, there are many names to describe the state of being under the influence of the substance.[18] This list is not exhaustive; it includes well-attested names.

The first recorded name for cannabis is the Chinese 麻 (Má), which is prehistoric.

  • "ang" or "an"
  • "kan-"
  • "san-" and "kan-" or "gan-"
  • भांग (Bhang)
  • Bhaṅgā
  • Bhangi
  • Cáñamo
  • Canapa
  • Cannabis
  • Cần sa
  • Chamba
  • Chanvre
  • चरस (Charas)
  • Dagga
    • Diamba
  • Esrar
  • ගංජා (Gaṁjā)
  • Gandia
  • Ganja
  • గంజాయి (Gan̄jāyi)
  • Gañjikā
  • Grass
  • Grifa
  • Hanf
  • Hamp
  • Hampa
  • Hamppu
  • Hashish
  • Hemp
  • Hennep
  • Hursīnī
  • Injaga
  • Kanas
  • കഞ്ചാവ് (Kañcāv)
  • Kaņepes
  • កញ្ឆា (Kanhchhea)
  • Kan-jac
  • Kάνναβις (Kánnabis)
  • กัญชา (Kạỵchā)
  • Kenevir
  • قنب (Kinnab or Quinnab)
  • Konopí
  • Konopie
  • Конопля (Konoplya)
  • Kunnabu
  • 麻 (Má)
  • Ma-kaña
  • Maconha
  • Marijuana
  • Mbanje
  • Pakalolo
  • Pango
  • Potiguaya
  • 삼 (Sam-gwa)
  • Siddhi

Sources

References

1

McPartland, J. M. (2000). Hemp diseases and pests : management and biological control : an advanced treatise. Robert Connell Clarke, David Paul Watson. New York, N.Y.: CABI Pub. ISBN 0-85199-454-7. OCLC 43526760.

2

Kostanda, Elizabeth; Khatib, Soliman (2022). "Biotic stress caused by Tetranychus urticae mites elevates the quantity of secondary metabolites, cannabinoids and terpenes, in Cannabis sativa L." Industrial Crops and Products. 176: 114331. doi:10.1016/j.indcrop.2021.114331. S2CID 245271895.

3

Dolgin, Elie (2019-08-28). "The bioengineering of cannabis". Nature. 572 (7771): S5–S7. Bibcode:2019Natur.572S...5D. doi:10.1038/d41586-019-02525-4. S2CID 201669745.

4

Mackie, K. (2008). "Cannabinoid Receptors: Where They are and What They do". Journal of Neuroendocrinology. 20 (s1): 10–14. doi:10.1111/j.1365-2826.2008.01671.x. ISSN 0953-8194. PMID 18426493. S2CID 20161611.

5

Atakan, Zerrin (2012). "Cannabis, a complex plant: different compounds and different effects on individuals". Therapeutic Advances in Psychopharmacology. 2 (6): 241–254. doi:10.1177/2045125312457586. ISSN 2045-1253. PMC 3736954. PMID 23983983.

6

Park, Sang-Hyuck; Staples, S. Kyle; Gostin, Eric L.; Smith, Jeffrey P.; Vigil, Jose J.; Seifried, Dustin; Kinney, Chad; Pauli, Christopher S.; Heuvel, Brian D. Vanden (2019-07-19). "Contrasting Roles of Cannabidiol as an Insecticide and Rescuing Agent for Ethanol–induced Death in the Tobacco Hornworm Manduca sexta". Scientific Reports. 9 (1): 10481. Bibcode:2019NatSR...910481P. doi:10.1038/s41598-019-47017-7. ISSN 2045-2322. PMC 6642087. PMID 31324859.

7

Startek, Justyna B.; Voets, Thomas; Talavera, Karel (2019). "To flourish or perish: evolutionary TRiPs into the sensory biology of plant-herbivore interactions". Pflügers Archiv: European Journal of Physiology. 471 (2): 213–236. doi:10.1007/s00424-018-2205-1. ISSN 0031-6768. PMID 30229297. S2CID 52295450.

8

Booth, Judith K.; Page, Jonathan E.; Bohlmann, Jörg (2017-03-29). "Terpene synthases from Cannabis sativa". PLOS ONE. 12 (3): e0173911. Bibcode:2017PLoSO..1273911B. doi:10.1371/journal.pone.0173911. ISSN 1932-6203. PMC 5371325. PMID 28355238.

9

Tahir, M. Nazir; Shahbazi, Fred; Rondeau-Gagné, Simon; Trant, John F. (2021-03-15). "The biosynthesis of the cannabinoids". Journal of Cannabis Research. 3 (1): 7. doi:10.1186/s42238-021-00062-4. ISSN 2522-5782. PMC 7962319. PMID 33722296.

10

Kostanda, Elizabeth; Khatib, Soliman (2022-02-01). "Biotic stress caused by Tetranychus urticae mites elevates the quantity of secondary metabolites, cannabinoids and terpenes, in Cannabis sativa L." Industrial Crops and Products. 176: 114331. doi:10.1016/j.indcrop.2021.114331. ISSN 0926-6690. S2CID 245271895.

11

Russo, Ethan B (2011). "Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects: Phytocannabinoid-terpenoid entourage effects". British Journal of Pharmacology. 163 (7): 1344–1364. doi:10.1111/j.1476-5381.2011.01238.x. PMC 3165946. PMID 21749363.

12

Gagne, Steve J.; Stout, Jake M.; Liu, Enwu; Boubakir, Zakia; Clark, Shawn M.; Page, Jonathan E. (2012-07-31). "Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides". Proceedings of the National Academy of Sciences. 109 (31): 12811–12816. Bibcode:2012PNAS..10912811G. doi:10.1073/pnas.1200330109. ISSN 0027-8424. PMC 3411943. PMID 22802619.

13

Booth, Judith K.; Bohlmann, Jörg (2019). "Terpenes in Cannabis sativa – From plant genome to humans". Plant Science. 284: 67–72. doi:10.1016/j.plantsci.2019.03.022. ISSN 0168-9452. PMID 31084880. S2CID 132531181.

14

Harrewijn, Paul (2001). Natural Terpenoids as Messengers: A multidisiplinary study of their production, biological functions and practical applications. Dordrecht, The Netherlands: Kluwer Academic Publishers. pp. 18–23. ISBN 0-7923-6891-6.

15

Boncan, Delbert Almerick T.; Tsang, Stacey S.K.; Li, Chade; Lee, Ivy H.T.; Lam, Hon-Ming; Chan, Ting-Fung; Hui, Jerome H.L. (2020-10-06). "Terpenes and Terpenoids in Plants: Interactions with Environment and Insects". International Journal of Molecular Sciences. 21 (19): 7382. doi:10.3390/ijms21197382. ISSN 1422-0067. PMC 7583029. PMID 33036280.

16

Sommano, Sarana Rose; Chittasupho, Chuda; Ruksiriwanich, Warintorn; Jantrawut, Pensak (2020-12-08). "The Cannabis Terpenes". Molecules. 25 (24): 5792. doi:10.3390/molecules25245792. ISSN 1420-3049. PMC 7763918. PMID 33302574.

17

Edwards, Adam S. (February 13, 2017). "Learn Marijuana Slang Terms and Weed Street Names". LookyWeed. Retrieved August 18, 2018.

18

Steinmetz, Katy (April 20, 2017). "420 Day: Why There Are So Many Different Names for Weed". TIME.